* !!! CHAT !!!

Refrescar Historia
  • admin: : Publicación del Boletín Nº 31 Octubre 2022 de la UKSRC en Español!! ver en [link]
    Noviembre 02, 2022, 11:23:23 am
  • Mac: Hola
    Noviembre 02, 2022, 18:45:45 pm
  • Mac: Ho hola buenas tardes me gustaría saber algo más sobre mí mi regla León lalanne de 1850 con recubierto de cristal
    Noviembre 02, 2022, 18:52:11 pm
  • Mac: Saber si es rara , interesante,coleccionable etc
    Noviembre 03, 2022, 12:36:14 pm
  • Mac: Hola
    Noviembre 03, 2022, 16:40:14 pm
  • JMV: faberius
    Noviembre 04, 2022, 16:14:36 pm
  • admin: Reyes Magos 2023 para ARC:  El regalo para un Rey   [link]
    Enero 06, 2023, 03:16:35 am
  • Hidroneperiano: Buenas tardes a todos, es la primera vez que entro a este foro
    Febrero 04, 2023, 18:57:10 pm
  • Hidroneperiano: Es un placer hacerlo y saludar a todos
    Febrero 04, 2023, 18:57:33 pm
  • jfz62: Hola Hidroperiano, Ya habrás comprobado que el chat no esta muy poblado, mejor escribe un mensaje de presentación en la sección Bienvenido a ARC: [link]
    Febrero 11, 2023, 21:03:25 pm
  • JB: Hola a todos Soy José María, de "un lugar de La Mancha de cuyo nombre no quiero acordarme", recién llegado a esta plaza. Cuando he buscado manuales o información sobre reglas de cálculo, he dado en muchas ocasiones con reglasdecalculo.com y con este foro. ARC y otros grupos de amigos de las reglas de cálculo están colaborando en preservar lo que es un patrimonio tecnológico y también cultural (sí, la tecnología también es cultura) de la humanidad. Es un patrimonio de 400 años, que estando en desuso (sin lamentaciones: es el devenir de la Historia), se mantiene vivo gracias a aficionados y curiosos como los miembros de ARC. Como aficionado y curioso me uno a este grupo. Como dicen los ingleses "birds of a feather flock together", o nosotros "Dios los cría y ellos se juntan". Tengo interés, fundamentalmente, en el cálculo no electrónico: reglas de cálculo (con una querencia especial por las que llamáis aquí "hormigoneras" y de cálculos hidráulicos), tablas logarítmicas, calculadoras mecánicas, nomografía,... Nunca estuve en un foro. Me tomaré mi tiempo, observando, para ver cómo funciona esto. Un saludo desde La Mancha
    Febrero 13, 2023, 16:39:57 pm
  • Hidroneperiano: Hola a todos me estreno en el chat
    Febrero 15, 2023, 20:44:40 pm
  • JB: Hola. Aprovechando que a estas horas nadie me disputa la palabra, os envío el link [link], donde podéis trastear con la N-Universale, sistema Baggio, como regla virtual. Buscadla en el menú desplegable. El buscador indica que es una página no segura, pero es por no estar registrada. Puedo asegurar y aseguro, que es segura
    Febrero 25, 2023, 22:41:38 pm
  • Josep: Lafayette F686
    Septiembre 06, 2023, 11:14:51 am
  • Epsilon: Sabadell
    Noviembre 24, 2023, 10:11:08 am
  • jfz62: Epsilon: Sabadell    ¿?¿?
    Noviembre 25, 2023, 20:32:35 pm
  • AHMS: De un Genio.... Solo se esperan genIalidades. R.I.P. jORGE
    Abril 08, 2024, 08:56:03 am
  • AHMS: Hola a todos... La vida sigue igual. ¡Aaaleeluyaaaa!
    Mayo 04, 2024, 09:24:06 am
  • AHMS: GMA.... Estas como editor. Perfecto.
    Mayo 04, 2024, 09:28:18 am
  • JB: La hormigonera Nestler 0440 es una regla especial puede calcular en rotura (la única?). Poca información hay de ella y se encuentra aquí en ARC. Recientemente he encontrado alguna información en [link] He podido consultar las normas holandesas por las que se rige la regla y un librito que explica el método de rotura que se sigue en ellas. También he elaborado un papelito en el que muestro, por ejemplo, la relación de la regla con la "parábola de Madrid", el porqué del 35 rojo en la escala central, del coeficiente de seguridad 1,8 que se repite, la expresión algebraica de los parámetros de la regla y relación entre ellos, la revisión de los ejercicios del manual y la humorada de ver cómo se comporta la regla resolviendo 4 ejercicios del "Hormigón Armado, de J. Montoya" (adelanto que sorprendentemente bien). Sé que es un ámbito de interés muy específico, sólo para aquellos miembros de la Orden de los Caballeros de la Regla muy hormigoneros. Si hay interés, puedo compartir el papel, si se me indica cómo.
    Abril 26, 2025, 16:07:13 pm

Autor [EN] [PL] [PT] [IT] [DE] [FR] [NL] [TR] [SR] [AR] [RU] [GR] [JP] [CN] Tema: Re:Problemas resueltos -resolución de triángulo con 2 lados y el ángulo incluído  (Leído 287 veces)

0 Usuarios y 1 Visitante están viendo este tema.

Desconectado Josep

  • Sarg. Darmstadt
  • ***
  • Mensajes: 164
  • Karma: 2
  • Sexo: Masculino
Otra técnica de resolución de triángulos. Esta es algo peculiar (la encontré en la lista de correo del ISRG), pero permite resolver un caso peculiar muy rápidamente. Se requiere una RC con escala de senos en la reglilla

Tenemos un triángulo del que conocemos dos lados y el ángulo comprendido entre ellos. Tomemos como ejemplo 150 y 170 metros, con un ángulo incluido de 6 grados

Empezamos calculando la relación entre ambos lados del triángulo que conocemos. Movemos 1,7 en C sobre 1,5 en D. Ahora bien, por el teorema de los senos, esta relación es la misma que hay entre los senos de los dos ángulos opuestos a estos lados. Por tanto, llevmaos el cursor al índice derecho de C y empezamos a mover la reglilla

Los dos ángulos que buscamos serán los que en la escala S cumplen estas dos condiciones simultánemanete

1) están uno bajo el cursor y el otro sobre el índice derecho de D
2) La sumade ambos ángulos nos da el ángulo suplementario al ángulo conocido. En este caso, 180-6=172

En este caso, veremos que no es posible encontrar dos ángulos que cumplan. Esto se debe a que el triángulo tiene un ángulo obtuso. Para este caso, hay que encontrar dos ángulos cuya DIFERENCIA nos de el ángulo conocido. En este caso, los ángulos valen 18,6 y 24,6 en la escala S. El ángulo de 24,6 es en realidad el suplementario del ángulo que buscamos (el seno vale lo mismo). Los ángulos del triángulo serán pues 18,6 y 155,4)
Para encontrar el tercer lado, como 6 en la escala S está fuera de índices multiplicamos el lado mayor por 4 (sirve cualquier valor que nos permita tener todos los ángulos entre los dos índices de D, pero los valores enteros son más fáciles de buscar) y en el valor resultante ponemos el valor del ángulo opuesto al lado mayor

Usando el treorema de los senos Bajo 6 en la escala S encontramos el valor 168, que dividido por 4 nos da 42, que es el lado que falta


 

 
« Última modificación: Marzo 27, 2024, 10:34:02 am por Josep »